Most quantitative assessments of civil conflict draw on annual country-level data to determine a baseline hazard of conflict onset. The first problem with such analyses is that they ignore factors associated with the precipitation of violence, such as elections and natural disasters and other trigger mechanisms. Given that baseline hazards are relatively static, most of the temporal variation in risk is associated with such precipitating factors. The second problem with most quantitative analyses of conflict is that they assume that civil conflicts are distributed uniformly throughout the country. This is rarely the case; most intrastate armed conflicts take place in the periphery of the country, well away from the capital and often along international borders. Analysts fail to disaggregate temporally as well as spatially. While other contributions to this issue focus on the temporal aspect of conflict, this article addresses the second issue: the spatial resolution of analysis. To adequately assess the baseline risk of armed conflict, this article develops a unified prediction model that combines a quantitative assessment of conflict risk at the country level with country-specific sub-national analyses at first-order administrative regions. Geo-referenced data on aspects of social, economic, and political exclusion, as well as endemic poverty and physical geography, are featured as the principal local indicators of latent conflict. Using Asia as a test case, this article demonstrates the unique contribution of applying a localized approach to conflict prediction that explicitly captures sub-national variation in civil conflict risk.
Rustad, Siri Aas; Halvard Buhaug; Åshild Falch & Scott Gates (2011) All Conflict Is Local: Modeling Sub-National Variation in Civil Conflict Risk, Conflict Management and Peace Science 28 (1): 15–40.